
Agile Specifications
Linking Requirements and Architecture Using

Executable Examples

Mario Cardinal

Software Architect

http://mariocardinal.com

AgileTour 2010

• Software architect who works with the
Urban Turtle team

Who am I ?

Professional Scrum Developer (.NET)

• An innovate program for developers from

Microsoft and the founders of Scrum

Learn how to use modern engineering practices to develop an
increment of complete, potentially shippable functionality using
Visual Studio 2010, ALM, and the Scrum framework

• Training course and certification available by Pyxis

http://pyxis-tech.com/psd

• Free Urban Turtle for students

http://urbanturtle.com

Extend Microsoft TFS with scrum project management

• Communicating input specifications accurately

with minimal effort

• Verifying, repeatedly, and at any time that the

software application under construction meets

the specifications

• Automating the verification using input

specifications

Why are we here?
I have a dream

• Requirements specifications (input)
– Expressing goals with user stories

– Specifying user stories using examples

– Connecting examples with code

– Verifying code correctness with examples

• Architecture specifications (output)
– Partitioning complexity into responsibilities

– Isolating responsibilities behind visible interface

– Designing visible interface

• Linking Requirements and Architecture
– Automating the verification using input specifications

Agenda
Simplicity is the ultimate sophistication

• Describe goals using user stories

• Discover goals by exploring user roles

– “As a <user role>, I want <goal> so that <benefits>”

• Plan and prioritize goals using a backlog

– Derive scope from goals

– Remove dependencies from goals

• Manage and track works using goals

Requirements specifications
Step1. Tackle complexity

• Illustrate user stories using concrete examples

• Specify only when the user story is committed

• Specify collaboratively using examples

• Refine examples using visual aids

• Evolves examples from release to release

Specify user stories using examples
Step2. Illustrate goals

• Automate using glue code
– Fixture code (FIT)

– UI automation (Selenium)

– Output analysis (TextTest)

• Automate using an internal DSL
– Scenario + Step definition (Cucumber)

• Examples are written using GWT syntax

• Potential impedance mismatch between examples and code

– Table mapping + Architecture specification
• Examples are written in plain English

• Ubiquitous language between examples and code

Connect examples with code
Step 3. Automate verification

• Execute code on a test environment

– Runner

– Remote execution

• Enhance examples with test results

– Pass, Fail or Not implemented

• Create a living documentation

Verify code correctness with examples
Step4. Ensure implementation correctness

• Tackle complexity by achieving simplicity

• Achieve simplicity using proven heuristics

• Partition complexity into layers

• Divide layers into responsibilities

Architecture specifications
Partitioning complexity into responsibilities

Architecture specifications
Isolating responsibilities behind visible interface

• Consist in breaking the dependency
chain using a visible interface

• Visible interface is a façade
– Act as a single point of coupling

between layers

– Prevent modifications to propagate to
other layers

• Visible interface factor out details
regarding each layer
– Help understand the hidden behavior

encapsulate inside a layer

• Allow substitution of implementation

for various testing purpose

– Replacing an implementation with a

mockup without affecting dependent

clients

– Mockup is a prototype that looks and

works just like the real thing

• Allow testing a layer in a test-bed

without having to assemble the

whole system

Architecture specifications
Isolating responsibilities behind visible interface

• Objects programming language provides formal

abstractions not only for designing the syntax but

also for designing the contract and semantics of

the visible interface

interface = syntax + contract + semantic

Architecture specifications
Designing visible interface

Architecture specifications
Visible interface syntax

Architecture specifications
Visible interface syntax

Architecture specifications
Visible interface syntax

 public interface IPureBehavior

 {
 DataContainer1 Operation1(Guid identifier);
 }

 public class DataContainer1

 {
 public DataContainer1(Guid input1, DateTime input2, string input3)
 {

 IdentifierAttribute = input1;
 DateAttribute = input2;

 StringAttribute = input3;
 }
 public Guid IdentifierAttribute { get; private set; }

 public DateTime DateAttribute { get; private set; }
 public string StringAttribute { get; private set; }
 }

 public class LocateKeyException : Exception
 {

 public LocateKeyException(Guid _identifier)
 : base("Unable to find item with key value " + _identifier)

 {
 }
 }

• This category of semantics (before and after execution) has

been popularized under the name “Design by Contract” by

Bertrand Meyer in his seminal book Object Oriented

Software Construction

• Collaboration before and after execution must be managed

by a set of clauses, which form a contract:

�Preconditions are conditions that must be met on entry to

the method before execution

�Postconditions are conditions that must be true after

execution at all normal exit points of the method

�Class invariants are conditions that the object instance must

satisfy at any time

Architecture specifications
Visible interface contract

• Illustrate responsibilities using examples

– Add tables mapping in architecture specification

• Assign a class and a method to the table

• Assign input parameters and return value by adding columns

• Define object type using columns header

• Define composite object by splitting columns

• List the case by adding rows

– Create a mockup

• Write minimal implementation to execute examples with
success

Architecture specifications
Visible interface semantic

• Divide domain layer into responsibilities

• Illustrate responsibilities using examples from
requirements
– Specify the responsibility of the visible interface

– Specify only when the responsibility is committed

– Specify collaboratively using examples

• Verify and refine responsibilities with examples
– Table mapping from requirement specifications

– Mockup code

• Evolves examples from release to release

Linking Requirements and Architecture
Verify requirements with the domain layer

• Is this only theory?

• What are the tool available?

– Green Pepper (Java, .NET, C++)

– Cucumber (Ruby)

Conclusion

http://www.greenpeppersoftware.com

Do not hesitate to contact me

mcardinal@mariocardinal.com

